Active touch in orthopteroid insects: behaviours, multisensory substrates and evolution

Author:

Comer Christopher12,Baba Yoshichika1

Affiliation:

1. Division of Biological Sciences, 136 Liberal Arts Bldg, The University of Montana, Missoula, MT 59812, USA

2. College of Arts and Sciences, 136 Liberal Arts Bldg, The University of Montana, Missoula, MT 59812, USA

Abstract

Orthopteroid insects (cockroaches, crickets, locusts and related species) allow examination of active sensory processing in a comparative framework. Some orthopteroids possess long, mobile antennae endowed with many chemo- and mechanoreceptors. When the antennae are touched, an animal's response depends upon the identity of the stimulus. For example, contact with a predator may lead to escape, but contact with a conspecific may usually not. Active touch of an approaching object influences the likelihood that a discrimination of identity will be made. Using cockroaches, we have identified specific descending mechanosensory interneurons that trigger antennal-mediated escape. Crucial sensory input to these cells comes from chordotonal organs within the antennal base. However, information from other receptors on the base or the long antennal flagellum allows active touch to modulate escape probability based on stimulus identity. This is conveyed, at least to some extent, by textural information. Guidance of the antennae in active exploration depends on visual information. Some of the visual interneurons and the motor neurons necessary for visuomotor control have been identified. Comparisons across Orthoptera suggest an evolutionary model where subtle changes in the architecture of interneurons, and of sensorimotor control loops, may explain differing levels of vision–touch interaction in the active guidance of behaviour.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3