The perils of intralocus recombination for inferences of molecular convergence

Author:

Mendes Fábio K.12,Livera Andrew P.2,Hahn Matthew W.23ORCID

Affiliation:

1. Department of Computer Science, The University of Auckland, Auckland 1010, New Zealand

2. Department of Biology, Indiana University, Bloomington, IN 47405, USA

3. Department of Computer Science, Indiana University, Bloomington, IN 47405, USA

Abstract

Accurate inferences of convergence require that the appropriate tree topology be used. If there is a mismatch between the tree a trait has evolved along and the tree used for analysis, then false inferences of convergence (‘hemiplasy’) can occur. To avoid problems of hemiplasy when there are high levels of gene tree discordance with the species tree, researchers have begun to construct tree topologies from individual loci. However, due to intralocus recombination, even locus-specific trees may contain multiple topologies within them. This implies that the use of individual tree topologies discordant with the species tree can still lead to incorrect inferences about molecular convergence. Here, we examine the frequency with which single exons and single protein-coding genes contain multiple underlying tree topologies, in primates and Drosophila , and quantify the effects of hemiplasy when using trees inferred from individual loci. In both clades, we find that there are most often multiple diagnosable topologies within single exons and whole genes, with 91% of Drosophila protein-coding genes containing multiple topologies. Because of this underlying topological heterogeneity, even using trees inferred from individual protein-coding genes results in 25% and 38% of substitutions falsely labelled as convergent in primates and Drosophila , respectively. While constructing local trees can reduce the problem of hemiplasy, our results suggest that it will be difficult to completely avoid false inferences of convergence. We conclude by suggesting several ways forward in the analysis of convergent evolution, for both molecular and morphological characters. This article is part of the theme issue ‘Convergent evolution in the genomics era: new insights and directions’.

Funder

Division of Biological Infrastructure

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3