Affiliation:
1. Department of Zoology, Tel Aviv University, Tel Aviv, Israel
2. Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO 50, Wageningen 6700 AB, The Netherlands
3. Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, PO Box 59, Den Burg 1790 AB, The Netherlands
Abstract
Animals should time activities, such as foraging, migration and reproduction, as well as seasonal physiological adaptation, in a way that maximizes fitness. The fitness outcome of such activities depends largely on their interspecific interactions; the temporal overlap with other species determines when they should be active in order to maximize their encounters with food and to minimize their encounters with predators, competitors and parasites. To cope with the constantly changing, but predictable structure of the environment, organisms have evolved internal biological clocks, which are synchronized mainly by light, the most predictable and reliable environmental cue (but which can be masked by other variables), which enable them to anticipate and prepare for predicted changes in the timing of the species they interact with, on top of responding to them directly. Here, we review examples where the internal timing system is used to predict interspecific interactions, and how these interactions affect the internal timing system and activity patterns. We then ask how plastic these mechanisms are, how this plasticity differs between and within species and how this variability in plasticity affects interspecific interactions in a changing world, in which light, the major synchronizer of the biological clock, is no longer a reliable cue owing to the rapidly changing climate, the use of artificial light and urbanization.
This article is part of the themed issue ‘Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals’.
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology
Cited by
72 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献