Eulemur , me lemur: the evolution of scent-signal complexity in a primate clade

Author:

delBarco-Trillo Javier1,Sacha Caitlin R.2,Dubay George R.2,Drea Christine M.13

Affiliation:

1. Department of Evolutionary Anthropology, Duke University, Durham, NC, USA

2. Department of Chemistry, Duke University, Durham, NC, USA

3. Department of Biology, Duke University, Durham, NC, USA

Abstract

Signal complexity has been linked to social complexity in vocal, but not chemical, communication. To address this gap, we examined the chemical complexity of male and female glandular secretions in eight species of Eulemur. In this diverse clade of macrosmatic primates, species differ by social or mating system and dominance structure. We applied principal component and linear discriminate analyses to data obtained by gas chromatography/mass spectrometry. Beyond the significant effects on chemical signals of gland type, sex, season and species, we found effects of social variables and phylogeny. Notably, female odours were more chemically complex in multimale–multifemale species than pair-bonded species, whereas male odours were more chemically complex in codominant species than female-dominant species. Also, the traditional sexual dimorphism, whereby male signal complexity exceeds that of females, was present in codominant species, but reversed in female-dominant species. Lastly, a positive relationship between the species' pairwise chemical distances and their pairwise phylogenetic distances supported a gradual, but relatively fast mode of signal evolution. We suggest that the comparative method can be a powerful tool in olfactory research, revealing species differences relevant to the understanding of current signal utility and evolutionary processes. In particular, social complexity in lemurs may have selected for olfactory complexity.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3