The physiological basis of bird flight

Author:

Butler Patrick J.

Abstract

Flapping flight is energetically more costly than running, although it is less costly to fly a given body mass a given distance per unit time than it is for a similar mass to run the same distance per unit time. This is mainly because birds can fly faster than they can run. Oxygen transfer and transport are enhanced in migrating birds compared with those in non-migrators: at the gas-exchange regions of the lungs the effective area is greater and the diffusion distance smaller. Also, migrating birds have larger hearts and haemoglobin concentrations in the blood, and capillary density in the flight muscles tends to be higher. Species like bar-headed geese migrate at high altitudes, where the availability of oxygen is reduced and the energy cost of flapping flight increased compared with those at sea level. Physiological adaptations to these conditions include haemoglobin with a higher affinity for oxygen than that in lowland birds, a greater effective ventilation of the gas-exchange surface of the lungs and a greater capillary-to-muscle fibre ratio. Migrating birds use fatty acids as their source of energy, so they have to be transported at a sufficient rate to meet the high demand. Since fatty acids are insoluble in water, birds maintain high concentrations of fatty acid–binding proteins to transport fatty acids across the cell membrane and within the cytoplasm. The concentrations of these proteins, together with that of a key enzyme in the β-oxidation of fatty acids, increase before migration. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Reference64 articles.

1. Flight

2. Limits for oxygen and substrate transport in mammals;Hoppeler H;J. Exp. Biol,1998

3. Exercise in birds;Butler PJ;J. Exp. Biol.,1991

4. Design of the mammalian respiratory system. VII. Scaling mitochondrial volume in skeletal muscle to body mass

5. Design of the mammalian respiratory system. VIII. Capillaries in skeletal muscles

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3