Methods of modelling viral disease dynamics across the within- and between-host scales: the impact of virus dose on host population immunity

Author:

Steinmeyer Shelby H.1,Wilke Claus O.2,Pepin Kim M.3

Affiliation:

1. Department of Mathematics, University of Texas at Austin, Austin, TX 78712, USA

2. Section of Integrative Biology, Center for Computational Biology and Bioinformatics, and Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA

3. Department of Physics, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA

Abstract

We study the epidemiology of a viral disease with dose-dependent replication and transmission by nesting a differential-equation model of the within-host viral dynamics inside a between-host epidemiological model. We use two complementary approaches for nesting the models: an agent-based (AB) simulation and a mean-field approximation called the growth-matrix (GM) model. We find that although infection rates and predicted case loads are somewhat different between the AB and GM models, several epidemiological parameters, e.g. mean immunity in the population and mean dose received, behave similarly across the methods. Further, through a comparison of our dose-dependent replication model against two control models that uncouple dose-dependent replication from transmission, we find that host immunity in a population after an epidemic is qualitatively different than when transmission depends on time-varying viral abundances within hosts. These results show that within-host dynamics and viral dose should not be neglected in epidemiological models, and that the simpler GM approach to model nesting provides a reasonable tradeoff between model complexity and accuracy of results.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3