Confronting models with data: the challenges of estimating disease spillover

Author:

Cross Paul C.1ORCID,Prosser Diann J.2ORCID,Ramey Andrew M.3ORCID,Hanks Ephraim M.4ORCID,Pepin Kim M.5ORCID

Affiliation:

1. U.S. Geological Survey, Northern Rocky Mountain Science Center, 2327 University Way, Suite 2, Bozeman, MT 59715, USA

2. U.S. Geological Survey, Patuxent Wildlife Research Center, 12100 Beech Forest Drive, Laurel, MD 20708, USA

3. U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK 99508, USA

4. Department of Statistics, Pennsylvania State University, University Park, PA 16802, USA

5. National Wildlife Research Center, USDA-APHIS, Fort Collins, CO 80526, USA

Abstract

For pathogens known to transmit across host species, strategic investment in disease control requires knowledge about where and when spillover transmission is likely. One approach to estimating spillover is to directly correlate observed spillover events with covariates. An alternative is to mechanistically combine information on host density, distribution and pathogen prevalence to predict where and when spillover events are expected to occur. We use several case studies at the wildlife–livestock disease interface to highlight the challenges, and potential solutions, to estimating spatio-temporal variation in spillover risk. Datasets on multiple host species often do not align in space, time or resolution, and may have no estimates of observation error. Linking these datasets requires they be related to a common spatial and temporal resolution and appropriately propagating errors in predictions can be difficult. Hierarchical models are one potential solution, but for fine-resolution predictions at broad spatial scales, many models become computationally challenging. Despite these limitations, the confrontation of mechanistic predictions with observed events is an important avenue for developing a better understanding of pathogen spillover. Systems where data have been collected at all levels in the spillover process are rare, or non-existent, and require investment and sustained effort across disciplines. This article is part of the theme issue ‘Dynamic and integrative approaches to understanding pathogen spillover’.

Funder

Animal and Plant Health Inspection Service

U.S. Geological Survey

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3