Female adult puncture-induced plant volatiles promote mating success of the pea leafminer via enhancing vibrational signals

Author:

Ge Jin1,Li Na1,Yang Junnan1,Wei Jianing1ORCID,Kang Le12ORCID

Affiliation:

1. State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, People's Republic of China

2. Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, People's Republic of China

Abstract

Herbivore-induced plant volatiles (HIPVs) synergize with the sex pheromones of herbivorous insects to facilitate mate location. However, the synergism of HIPVs and acoustic signals for sexual communication remains unknown. Here, we investigated the synergy between HIPVs and vibrational duets for sexual communication and mating in the pea leafminer ( Liriomyza huidobrensis ). Our results indicated that adult leafminers do not produce species-specific pheromone, and female-puncture-induced plant volatiles facilitate the attraction of both sexes to host plant leaves and sexual encounters. Insect-derived cues do not participate in mate locations. Both sexes do not produce qualitatively different cuticular hydrocarbons (CHCs), and CHCs from females cannot elicit the antennal and behavioural responses of males. By contrast, induced green leaf volatiles, terpenoids and oximes elicit dramatic antennal responses in both sexes. Electrophysiological and behavioural tests consistently showed that the volatiles (Z)-3-hexenol and (Z)-3-hexenyl-acetate elicited the most intense gas chromatographic-electroantennographic responses, and attracted males and females. Remarkably, these volatiles significantly promoted the occurrence of vibrational duets between the sexes, thereby increasing the mating success of leafminers. Therefore, the synergism of HIPVs and vibrational signals largely promoted the mating success of leafminers, suggesting an alternative control strategy through precision trapping for non-pheromone-producing insects. This article is part of the theme issue ‘Biotic signalling sheds light on smart pest management’.

Funder

National Key R&D Program of China

the National Nature Science Foundation of China

the Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3