Evolution of lactase persistence: an example of human niche construction

Author:

Gerbault Pascale1,Liebert Anke1,Itan Yuval12,Powell Adam13,Currat Mathias4,Burger Joachim5,Swallow Dallas M.1,Thomas Mark G.1236

Affiliation:

1. Research Department of Genetics, Evolution and Environment, University College London, Wolfson House, 4 Stephenson Way, London NW1 2HE, UK

2. CoMPLEX (Centre for Mathematics and Physics in the Life Sciences and Experimental Biology), University College London, Physics Building, Gower Street, London WC1E 6BT, UK

3. AHRC Centre for the Evolution of Cultural Diversity, Institute of Archaeology, University College London, 31–34 Gordon Square, London WC1H 0PY, UK

4. Laboratory of Anthropology, Genetics and Peopling History (AGP), Department of Anthropology and Ecology, University of Geneva, 12 rue Gustave-Revilliod, 1227 Geneva, Switzerland

5. Institute of Anthropology, Johannes Gutenberg University, AG Palaeogenetik, SBII-2 Stock-Raum 02-333, Colonel Kleinmann-Weg 2, 55128 Mainz, Germany

6. Evolutionary Biology Centre, Department of Evolutionary Biology, Uppsala University, Norbyvagen 18D, 752 36 Uppsala, Sweden

Abstract

Niche construction is the process by which organisms construct important components of their local environment in ways that introduce novel selection pressures. Lactase persistence is one of the clearest examples of niche construction in humans. Lactase is the enzyme responsible for the digestion of the milk sugar lactose and its production decreases after the weaning phase in most mammals, including most humans. Some humans, however, continue to produce lactase throughout adulthood, a trait known as lactase persistence. In European populations, a single mutation (−13910*T) explains the distribution of the phenotype, whereas several mutations are associated with it in Africa and the Middle East. Current estimates for the age of lactase persistence-associated alleles bracket those for the origins of animal domestication and the culturally transmitted practice of dairying. We report new data on the distribution of−13910*Tand summarize genetic studies on the diversity of lactase persistence worldwide. We review relevant archaeological data and describe three simulation studies that have shed light on the evolution of this trait in Europe. These studies illustrate how genetic and archaeological information can be integrated to bring new insights to the origins and spread of lactase persistence. Finally, we discuss possible improvements to these models.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 326 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3