Single cell ecogenomics reveals mating types of individual cells and ssDNA viral infections in the smallest photosynthetic eukaryotes

Author:

Benites L. Felipe1,Poulton Nicole2,Labadie Karine3,Sieracki Michael E.4,Grimsley Nigel1ORCID,Piganeau Gwenael1ORCID

Affiliation:

1. Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanological Observatory of Banyuls, 66650 Banyuls-sur-Mer, France

2. Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544, USA

3. Genoscope, Institut de Biologie François-Jacob, Commissariat à l'Energie Atomique, université Paris Saclay, 9105 Evry, France

4. National Science Foundation, Alexandria, VA 22314, USA

Abstract

Planktonic photosynthetic organisms of the class Mamiellophyceae include the smallest eukaryotes (less than 2 µm), are globally distributed and form the basis of coastal marine ecosystems. Eight complete fully annotated 13–22 Mb genomes from three genera, Ostreococcus , Bathycoccus and Micromonas , are available from previously isolated clonal cultured strains and provide an ideal resource to explore the scope and challenges of analysing single cell amplified genomes (SAGs) isolated from a natural environment. We assembled data from 12 SAGs sampled during the Tara Oceans expedition to gain biological insights about their in situ ecology, which might be lost by isolation and strain culture. Although the assembled nuclear genomes were incomplete, they were large enough to infer the mating types of four Ostreococcus SAGs. The systematic occurrence of sequences from the mitochondria and chloroplast, representing less than 3% of the total cell's DNA, intimates that SAGs provide suitable substrates for detection of non-target sequences, such as those of virions. Analysis of the non-Mamiellophyceae assemblies, following filtering out cross-contaminations during the sequencing process, revealed two novel 1.6 and 1.8 kb circular DNA viruses, and the presence of specific Bacterial and Oomycete sequences suggests that these organisms might co-occur with the Mamiellales. This article is part of a discussion meeting issue ‘Single cell ecology’.

Funder

EU Horizon 2020 research

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3