Learning from Northern clingfish ( Gobiesox maeandricus ): bioinspired suction cups attach to rough surfaces

Author:

Ditsche Petra12ORCID,Summers Adam1

Affiliation:

1. Friday Harbor Laboratories, University of Washington, 620 University Drive, Friday Harbor, WA 98250, USA

2. Department of Biological Science, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, 99508-4614 AK, USA

Abstract

While artificial suction cups only attach well to smooth surfaces, the Northern clingfish can attach to surfaces ranging from nanoscale smooth to rough stone. This ability is highly desirable for technical applications. The morphology of the fish's suction disc and its ability to attach to rough and slimy surfaces have been described before, and here we aim to close gaps in the biomechanical understanding, and transfer the biomechanical principles to technical suction cups. We demonstrate that the margin of the suction disc is the critical feature enabling attachment to rough surfaces. Second, friction measurements show that friction of the disc rim is increased on rough substrates and contributes to high tenacity. Increased friction causes a delay in failure of the suction cup and increases the attachment force. We were able to implement these concepts to develop the first suction cups bioinspired by Northern clingfish. These cups attach with tenacities up to 70 kPa on surfaces as rough as 270 µm grain size. The application of this technology is promising in fields such as surgery, industrial production processes and whale tagging. This article is part of the theme issue ‘Transdisciplinary approaches to the study of adhesion and adhesives in biological systems'.

Funder

National Science Foundation

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3