The crossover from microscopy to genes in marine diversity: from species to assemblages in marine pelagic copepods

Author:

Laakmann Silke12ORCID,Blanco-Bercial Leocadio3,Cornils Astrid2

Affiliation:

1. Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstrasse 231, 26129 Oldenburg, Germany

2. Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany

3. Bermuda Institute of Ocean Sciences, 17 Biological Station, GE 01 St George's, Bermuda

Abstract

An accurate identification of species and communities is a prerequisite for analysing and recording biodiversity and community shifts. In the context of marine biodiversity conservation and management, this review outlines past, present and forward-looking perspectives on identifying and recording planktonic diversity by illustrating the transition from traditional species identification based on morphological diagnostic characters to full molecular genetic identification of marine assemblages. In this process, the article presents the methodological advancements by discussing progress and critical aspects of the crossover from traditional to novel and future molecular genetic identifications and it outlines the advantages of integrative approaches using the strengths of both morphological and molecular techniques to identify species and assemblages. We demonstrate this process of identifying and recording marine biodiversity on pelagic copepods as model taxon. Copepods are known for their high taxonomic and ecological diversity and comprise a huge variety of behaviours, forms and life histories, making them a highly interesting and well-studied group in terms of biodiversity and ecosystem functioning. Furthermore, their short life cycles and rapid responses to changing environments make them good indicators and core research components for ecosystem health and status in the light of environmental change. This article is part of the theme issue ‘Integrative research perspectives on marine conservation’.

Funder

Ministry for Science and Culture of Lower Saxony

Volkswagen Foundation

U.S. National Science Foundation

Scientific Committee on Oceanic Research

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3