Predicting plant disease epidemics from functionally represented weather series

Author:

Shah D. A.1ORCID,Paul P. A.2ORCID,De Wolf E. D.1ORCID,Madden L. V.2ORCID

Affiliation:

1. Department of Plant Pathology, Kansas State University, 4024 Throckmorton PSC, Manhattan, KS 66506, USA

2. Department of Plant Pathology, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA

Abstract

Epidemics are often triggered by specific weather patterns favouring the pathogen on susceptible hosts. For plant diseases, models predicting epidemics have therefore often emphasized the identification of early season weather patterns that are correlated with a disease outcome at some later point. Toward that end, window-pane analysis is an exhaustive search algorithm traditionally used in plant pathology for mining correlations in a weather series with respect to a disease endpoint. Here we show, with reference to Fusarium head blight (FHB) of wheat, that a functional approach is a more principled analytical method for understanding the relationship between disease epidemics and environmental conditions over an extended time series. We used scalar-on-function regression to model a binary outcome (FHB epidemic or non-epidemic) relative to weather time series spanning 140 days relative to flowering (when FHB infection primarily occurs). The functional models overall fit the data better than previously described standard logistic regression (lr) models. Periods much earlier than heretofore realized were associated with FHB epidemics. The findings were used to create novel weather summary variables which, when incorporated into lr models, yielded a new set of models that performed as well as existing lr models for real-time predictions of disease risk. This article is part of the theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes’. This issue is linked with the subsequent theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control’.

Funder

U.S. Wheat & Barley Scab Initiative

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3