Network architectures supporting learnability

Author:

Zurn Perry1ORCID,Bassett Danielle S.23456ORCID

Affiliation:

1. Department of Philosophy, American University, Washington, DC 20016, USA

2. Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA

3. Department of Physics and Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA

4. Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA

5. Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

6. Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

Abstract

Human learners acquire complex interconnected networks of relational knowledge. The capacity for such learning naturally depends on two factors: the architecture (or informational structure) of the knowledge network itself and the architecture of the computational unit—the brain—that encodes and processes the information. That is, learning is reliant on integrated network architectures at two levels: the epistemic and the computational, or the conceptual and the neural. Motivated by a wish to understand conventional human knowledge, here, we discuss emerging work assessing network constraints on the learnability of relational knowledge, and theories from statistical physics that instantiate the principles of thermodynamics and information theory to offer an explanatory model for such constraints. We then highlight similarities between those constraints on the learnability of relational networks, at one level, and the physical constraints on the development of interconnected patterns in neural systems, at another level, both leading to hierarchically modular networks. To support our discussion of these similarities, we employ an operational distinction between the modeller (e.g. the human brain), the model (e.g. a single human’s knowledge) and the modelled (e.g. the information present in our experiences). We then turn to a philosophical discussion of whether and how we can extend our observations to a claim regarding explanation and mechanism for knowledge acquisition. What relation between hierarchical networks, at the conceptual and neural levels, best facilitate learning? Are the architectures of optimally learnable networks a topological reflection of the architectures of comparably developed neural networks? Finally, we contribute to a unified approach to hierarchies and levels in biological networks by proposing several epistemological norms for analysing the computational brain and social epistemes, and for developing pedagogical principles conducive to curious thought. This article is part of the theme issue ‘Unifying the essential concepts of biological networks: biological insights and philosophical foundations’.

Funder

John D. and Catherine T. MacArthur Foundation

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3