Evolution of C 4 plants: a new hypothesis for an interaction of CO 2 and water relations mediated by plant hydraulics

Author:

Osborne Colin P.1,Sack Lawren2

Affiliation:

1. Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK

2. UCLA Ecology and Evolutionary Biology, 621 Charles E. Young Drive South, Box 951606, Los Angeles, CA 90095-1606, USA

Abstract

C 4 photosynthesis has evolved more than 60 times as a carbon-concentrating mechanism to augment the ancestral C 3 photosynthetic pathway. The rate and the efficiency of photosynthesis are greater in the C 4 than C 3 type under atmospheric CO 2 depletion, high light and temperature, suggesting these factors as important selective agents. This hypothesis is consistent with comparative analyses of grasses, which indicate repeated evolutionary transitions from shaded forest to open habitats. However, such environmental transitions also impact strongly on plant–water relations. We hypothesize that excessive demand for water transport associated with low CO 2 , high light and temperature would have selected for C 4 photosynthesis not only to increase the efficiency and rate of photosynthesis, but also as a water-conserving mechanism. Our proposal is supported by evidence from the literature and physiological models. The C 4 pathway allows high rates of photosynthesis at low stomatal conductance, even given low atmospheric CO 2 . The resultant decrease in transpiration protects the hydraulic system, allowing stomata to remain open and photosynthesis to be sustained for longer under drying atmospheric and soil conditions. The evolution of C 4 photosynthesis therefore simultaneously improved plant carbon and water relations, conferring strong benefits as atmospheric CO 2 declined and ecological demand for water rose.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3