Assessment of stem cell differentiation based on genome-wide expression profiles

Author:

Godoy Patricio1ORCID,Schmidt-Heck Wolfgang2,Hellwig Birte3,Nell Patrick1,Feuerborn David1,Rahnenführer Jörg3,Kattler Kathrin4,Walter Jörn5,Blüthgen Nils56ORCID,Hengstler Jan G.1

Affiliation:

1. IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany

2. Leibniz Institute for Natural Product Research and Infection Biology eV-Hans-Knöll Institute, Jena, Germany

3. Department of Statistics, TU Dortmund University, Dortmund, Germany

4. Department of Genetics, University of Saarland, Saarbrücken 66123, Germany

5. Institute of Pathology, Charité Universitätsmedizin, 10117 Berlin, Germany

6. Integrative Research Institute for the Life Sciences, Institute for Theoretical Biology, Humboldt Universität, 10115 Berlin, Germany

Abstract

In recent years, protocols have been established to differentiate stem and precursor cells into more mature cell types. However, progress in this field has been hampered by difficulties to assess the differentiation status of stem cell-derived cells in an unbiased manner. Here, we present an analysis pipeline based on published data and methods to quantify the degree of differentiation and to identify transcriptional control factors explaining differences from the intended target cells or tissues. The pipeline requires RNA-Seq or gene array data of the stem cell starting population, derived ‘mature’ cells and primary target cells or tissue. It consists of a principal component analysis to represent global expression changes and to identify possible problems of the dataset that require special attention, such as: batch effects; clustering techniques to identify gene groups with similar features; over-representation analysis to characterize biological motifs and transcriptional control factors of the identified gene clusters; and metagenes as well as gene regulatory networks for quantitative cell-type assessment and identification of influential transcription factors. Possibilities and limitations of the analysis pipeline are illustrated using the example of human embryonic stem cell and human induced pluripotent cells to generate ‘hepatocyte-like cells'. The pipeline quantifies the degree of incomplete differentiation as well as remaining stemness and identifies unwanted features, such as colon- and fibroblast-associated gene clusters that are absent in real hepatocytes but typically induced by currently available differentiation protocols. Finally, transcription factors responsible for incomplete and unwanted differentiation are identified. The proposed method is widely applicable and allows an unbiased and quantitative assessment of stem cell-derived cells. This article is part of the theme issue ‘Designer human tissue: coming to a lab near you’.

Funder

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

FP7 Health

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3