On a method of determining the viscosity of gases, especially those available only in small quantities

Author:

Abstract

The apparatus about to be described was designed for the purpose of comparing the viscosities of neon, xenon, and krypton—the loan of which Sir William Ramsay kindly offered the author—with that of air. With such small quantities of gas available, the volume content of the apparatus must obviously be correspondingly small, and therefore, it would seem, unsuitable for absolute measurements. The object of the present paper is to show that this is by no means the case. As will be seen later, the method is actually restricted to small quantities by the conditions of the experiments, but there is no reason why it should not be used even when the gas under test may be obtained in practically unlimited amount. Theory of the Method . Consider a closed glass vessel (as in fig. 1) consisting of two connected limbs, one a fine capillary tube and the other of much greater cross-sectional area, yet sufficiently narrow for a pellet of mercury to remain intact in it. Let V be the volume unoccupied by mercury (the volume of the capillary tube being considered negligible). Let P denote the steady pressure of the gas in the tube when the latter is held horizontally, and let p be the difference of pressure caused by the mercury pellet when the apparatus is vertical. Let p 1 be the pressure and v 1 the volume at any time above the mercury, and p 2 , v 2 , the corresponding quantities below the mercury. Then V = v 1 + v 2 , and p 2 - p 1 = p .

Publisher

The Royal Society

Subject

General Medicine

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transient gas viscosity measurement using tunable diode laser absorption spectroscopy;Experiments in Fluids;2017-10-16

2. Measurement of gas viscosity using photonic crystal fiber;AIP Conference Proceedings;2016

3. HPHT viscosities measurements of mixtures of methane/nitrogen and methane/carbon dioxide;Journal of Natural Gas Science and Engineering;2013-05

4. Viskosität;Eigenschaften der Materie in ihren Aggregatzuständen;2013

5. Falling capillary tube viscometer suitable for liquids at high pressure;Review of Scientific Instruments;1998-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3