Bakerian Lecture :—Rays of positive electricity

Author:

Abstract

In 1886, Goldstein observed that when the cathode in a vacuum tube was pierced with holes, the electrical discharge did not stop at the cathode; behind the cathode, beams of light could be seen streaming through the holes in the way represented in fig. 1. He ascribed these pencils of light to rays passing through the holes into the gas behind the cathode; and from their association with the channels through the cathode he called these rays Kanalstrahlen. The colour of the light behind the cathode depends upon the gas in the tube: with air the light is yellowish, with hydrogen rose colour, with neon the gorgeous neon red, the effects with this gas being exceedingly striking. The rays produce phosphorescence when they strike against the walls of the tube; they also affect a photographic plate. Goldstein could not detect any deflection when a permanent magnet was held near the rays. In 1898, however, W. Wien, by the use of very powerful magnetic fields, deflected these rays and showed that some of them were positively charged; by measuring the electric and magnetic deflections he proved that the masses of the particles in these rays were comparable with the masses of atoms of hydrogen, and thus were more than a thousand times the mass of a particle in the cathode ray. The composition of these positive rays is much more complex than that of the cathode rays, for whereas the particles in the cathode rays are all of the same kind, there are in the positive rays many different kinds of particles. We can, however, by the following method sort these particles out, determine what kind of particles are present, and the velocities with which they are moving. Suppose that a pencil of these rays is moving parallel to the axis of x , striking a plane at right angles to their path at the point O; if before they reach the plane they are acted on by an electric force parallel to the axis of y , the spot where a particle strikes the plane will be deflected parallel to y through a distance y given by the equation y = e / mv 2 A, where e, m, v , are respectively the charge, mass, and velocity of the particle, and A a constant depending upon the strength of the electric field and the length of path of the particle, but quite independent of e, m , or v .

Publisher

The Royal Society

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3