Rapid induction of immune density-dependent prophylaxis in adult social insects

Author:

Ruiz-González Mario X.12,Moret Yannick3,Brown Mark J. F.14

Affiliation:

1. Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland

2. Laboratoire Evolution et Diversité Biologique, Bâtiment UMR-CNRS 5174, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France

3. Université de Bourgogne, UMR CNRS 5561 Biogéosciences, Equipe Ecologie Evolutive, 6 Boulevard Gabriel, 21000 Dijon, France

4. School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 OEX, UK

Abstract

The innate immune system provides defence against parasites and pathogens. This defence comes at a cost, suggesting that immune function should exhibit plasticity in response to variation in environmental threats. Density-dependent prophylaxis (DDP) has been demonstrated mostly in phase-polyphenic insects, where larval group size determines levels of immune function in either adults or later larval instars. Social insects exhibit extreme sociality, but DDP has been suggested to be absent from these ecologically dominant taxa. Here we show that adult bumble-bee workers ( Bombus terrestris ) exhibit rapid plasticity in their immune function in response to social context. These results suggest that DDP does not depend upon larval conditions, and is likely to be a widespread and labile response to rapidly changing conditions in adult insect populations. This has obvious ramifications for experimental analysis of immune function in insects, and serious implications for our understanding of the epidemiology and impact of pathogens and parasites in spatially structured adult insect populations.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous)

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3