Abstract
One of the most celebrated findings in complex systems in the last decade is that different indexes
y
(e.g. patents) scale nonlinearly with the population
x
of the cities in which they appear, i.e.
y
∼
x
β
,
β
≠1. More recently, the generality of this finding has been questioned in studies that used new databases and different definitions of city boundaries. In this paper, we investigate the existence of nonlinear scaling, using a probabilistic framework in which fluctuations are accounted for explicitly. In particular, we show that this allows not only to (i) estimate
β
and confidence intervals, but also to (ii) quantify the evidence in favour of
β
≠1 and (iii) test the hypothesis that the observations are compatible with the nonlinear scaling. We employ this framework to compare five different models to 15 different datasets and we find that the answers to points (i)–(iii) crucially depend on the fluctuations contained in the data, on how they are modelled, and on the fact that the city sizes are heavy-tailed distributed.
Funder
Portuguese Foundation for Science and Technology
Cited by
95 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献