Concordance between RNA-sequencing data and DNA microarray data in transcriptome analysis of proliferative and quiescent fibroblasts

Author:

Trost Brett1ORCID,Moir Catherine A.23,Gillespie Zoe E.4,Kusalik Anthony1,Mitchell Jennifer A.56,Eskiw Christopher H.24

Affiliation:

1. Department of Computer Science, University of Saskatchewan, Saskatoon Canada S7N 5C9

2. Department of Life Sciences, Brunel University, Uxbridge UB8 3PH, UK

3. Nuclear Dynamics Programme, Babraham Institute, Cambridge CB22 3AT, UK

4. Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon Canada S7N 5A8

5. Department of Cell and Systems Biology, University of Toronto, Toronto, Canada M5S 3G5

6. Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto Canada M5S 3G5

Abstract

DNA microarrays and RNA sequencing (RNA-seq) are major technologies for performing high-throughput analysis of transcript abundance. Recently, concerns have been raised regarding the concordance of data derived from the two techniques. Using cDNA libraries derived from normal human foreskin fibroblasts, we measured changes in transcript abundance as cells transitioned from proliferative growth to quiescence using both DNA microarrays and RNA-seq. The internal reproducibility of the RNA-seq data was greater than that of the microarray data. Correlations between the RNA-seq data and the individual microarrays were low, but correlations between the RNA-seq values and the geometric mean of the microarray values were moderate. The two technologies had good agreement when considering probes with the largest (both positive and negative) fold change (FC) values. An independent technique, quantitative reverse-transcription PCR (qRT-PCR), was used to measure the FC of 76 genes between proliferative and quiescent samples, and a higher correlation was observed between the qRT-PCR data and the RNA-seq data than between the qRT-PCR data and the microarray data.

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3