Sensitivity of endemic behaviour of COVID-19 under a multi-dose vaccination regime, to various biological parameters and control variables

Author:

Dagpunar John1ORCID,Wu Chenchen2ORCID

Affiliation:

1. School of Mathematical Sciences, University of Southampton, Southampton, UK

2. Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, People’s Republic of China

Abstract

For an infectious disease such as COVID-19, we present a new four-stage vaccination model (unvaccinated, dose 1 + 2, booster, repeated boosters), which examines the impact of vaccination coverage, vaccination rate, generation interval, control reproduction number, vaccine efficacies and rates of waning immunity upon the dynamics of infection. We derive a single equation that allows computation of equilibrium prevalence and incidence of infection, given knowledge about these parameters and variable values. Based upon a 20-compartment model, we develop a numerical simulation of the associated differential equations. The model is not a forecasting or even predictive one, given the uncertainty about several biological parameter values. Rather, it is intended to aid a qualitative understanding of how equilibrium levels of infection may be impacted upon, by the parameters of the system. We examine one-at-a-time sensitivity analysis around a base case scenario. The key finding which should be of interest to policymakers is that while factors such as improved vaccine efficacy, increased vaccination rates, lower waning rates and more stringent non-pharmaceutical interventions might be thought to improve equilibrium levels of infection, this might only be done to good effect if vaccination coverage on a recurrent basis is sufficiently high.

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3