Homogenization modelling of antibiotic diffusion and adsorption in viral liquid crystals

Author:

van Rossem M. T.1ORCID,Wilks S.2,Secor P. R.3,Kaczmarek M.1,D’Alessandro G.4

Affiliation:

1. Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK

2. Health Sciences, University of Southampton, Southampton SO17 1BJ, UK

3. Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA

4. Mathematical Sciences, University of Southampton, Southampton SO17 1BJ, UK

Abstract

Systems of rod-shaped viruses have long been important to the science of living liquid crystals, as their monodispersity and uniform charge make them convenient model systems. Recently, it was shown that, upon the addition of polymers, suspensions of rod-shaped viruses form liquid crystals that are linked with increased tolerance of bacteria against antibiotics. We use homogenization to obtain effective equations describing antibiotic diffusion through these liquid crystals. The analytical results of homogenization are compared with numerical results from an exact microscopic model, showing good agreement and thus allowing us to identify the key parameters behind the process. Our modelling shows that the adsorption plays a key role in increasing antibiotic diffusion time and therefore the presence of nematic rod-shaped viruses may increase antibiotic tolerance through physical mechanisms alone. These results demonstrate the applicability of homogenization as an analytical tool to systems of liquid crystalline viruses, with relatively straightforward extension to more complex problems such as liquid crystalline biofilms, other biological liquid crystals and biological systems with different types of local structural order.

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3