Multi-stage sleep classification using photoplethysmographic sensor

Author:

Motin Mohammod Abdul1ORCID,Karmakar Chandan2ORCID,Palaniswami Marimuthu3,Penzel Thomas4,Kumar Dinesh5

Affiliation:

1. Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Kazla, Rajshahi 6204, Bangladesh

2. School of IT, Deakin University, Burwood, Melbourne, VIC 3125, Australia

3. Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia

4. Interdisciplinary Sleep Medicine Center, Charite Universitatsmedizin, 10117 Berlin, Germany

5. School of Electrical and Biomedical Engineering, RMIT University, Melbourne, VIC 3001, Australia

Abstract

The conventional approach to monitoring sleep stages requires placing multiple sensors on patients, which is inconvenient for long-term monitoring and requires expert support. We propose a single-sensor photoplethysmographic (PPG)-based automated multi-stage sleep classification. This experimental study recorded the PPG during the entire night's sleep of 10 patients. Data analysis was performed to obtain 79 features from the recordings, which were then classified according to sleep stages. The classification results using support vector machine (SVM) with the polynomial kernel yielded an overall accuracy of 84.66%, 79.62% and 72.23% for two-, three- and four-stage sleep classification. These results show that it is possible to conduct sleep stage monitoring using only PPG. These findings open the opportunities for PPG-based wearable solutions for home-based automated sleep monitoring.

Funder

University Grants Commission of Bangladesh

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3