The amount of hydrogen and oxygen present on the surface of a metallic electrode

Author:

Abstract

In a pervious communication a study has been made of the potential changes which occur during the discharge of small quantities of electricity at metallic cathodes in an acid electrolyte. The electrode potential was, in general, more negative than the reversible hydrogen electrode, and it was found that over this range the potential change was a linear function of the quantity of electricity passed. This quantity was very small, 6 X 10 -7 coulombs per square centimetre causing a change of 100 millivolts in the electrode potential at a mercury surface. This linear relation was found on all the metals investigated, but the quantity varied with the nature and condition of the surface, being greater the rougher the surface. Experiments with amalgams, and platinised mercury surfaces showed that this quantity was, to a first approximation, accessible area of its surface. It was suggested that this change in potential may be regarded as due to the deposition of more hydrogen dipoles to the surface, or alternatively to a flux of electricity across the interface causing a further deformation of the hydrogen dipoles already present on the surface. Although the potential changes accompanying these additions to the surface have been studied, few measurements were made of the quantity of hydrogen initially present on the surface at the reversible hydrogen potential. It was considered probable that this was approximately a monatomic layer but it was of some interest to investigate this point.

Publisher

The Royal Society

Subject

General Medicine

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3