The mechanism of catalytic decomposition

Author:

Abstract

In recent years a large amount of evidence has accumulated showing that the range of molecular attraction is very small; hence the specific catalytic action of each substance must decrease very fast as the distance of the reacting molecules from the surface increases. The catalytic action must therefore be confined to the surface layer of adsorbed molecules alone. When alcoholic substances react at copper surfaces below 280° C., only the — CH 2 OH group is changed. The only molecules which react, therefore, are those which have the — CH 2 OH group in contact with the copper. The behaviour of cetyl alcohol on water, and on glass and steel, shows that the hydroxyl group is the active agent in orientating the film structure.It is known also that alcohol will displace hydrocarbons from copper foil. The polar hydroxyl group is attracted to the copper surface more strongly than is the hydrocarbon chain. The evidence, therefore, shows that not only are the molecules that react adsorbed with the hydroxyl group in contact with the surface, but that the whole layer in contact with the catalyst is orientated in this manner. It may be that the molecules in the successive layers are also arranged similarly, but the evidence is scanty. In the case of the fatty acids, X-ray analysis gives confirmation of this arrangement

Publisher

The Royal Society

Subject

General Medicine

Cited by 286 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Entropy and Isokinetic Temperature in Fast Ion Transport;Advanced Science;2023-11-03

2. Enthalpy-entropy compensation in the slow Arrhenius process;The Journal of Chemical Physics;2023-10-27

3. Characterization of combustion of hardwood and softwood through experimental and computer simulations;Journal of Thermal Analysis and Calorimetry;2023-05-29

4. A Physical Basis for Kinetic Compensation;The Journal of Physical Chemistry A;2023-03-03

5. Dehydrogenation of Alcohols Using Transition Metal Catalysts: History and Applications;Dehydrogenation Reactions with 3d Metals;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3