Bakerian Lecture: Nuclear constitution of atoms

Author:

Abstract

Introduction .—The conception of the nuclear constitution of atoms arose initially from attempts to account for the scattering of α-particles through large angles in traversing thin sheets of matter. Taking into account the large mass and velocity of the α-particles, these large deflexions were very remarkable, and indicated that very intense electric or magnetic fields exist within the atom. To account for these results, it was found necessary to assume that the atom consists of a charged massive nucleus of dimensions very small compared with the ordinarily accepted magnitude of the diameter of the atom. This positively charged nucleus contains most of the mass of the atom, and is surrounded at a distance by a distribution of negative electrons equal in number to the resultant positive charge on the nucleus. Under these conditions, a very intense electric field exists close to the nucleus, and the large deflexion of the α-particle in an encounter with a single atom happens when the particle passes close to the nucleus. Assuming that the electric forces between the α-particle and the nucleus varied according to an inverse square law in the region close to the nucleus, the writer worked out the relations connecting the number of α-particles scattered through any angle with the charge on the nucleus and the energy of the α-particle. Under the central field of force, the α-particle describes a hyperbolic orbit round the nucleus, and the magnitude of the deflection depends on the closeness of approach to the nucleus. From the data of scattering of α-particles then available, it was deduced that the resultant charge on the nucleus was about ½ A e , where A is the atomic weight and e the fundamental unit of charge. Geiger and Marsden made an elaborate series of experiments to test the correctness of the theory, and confirmed the main conclusions. They found the nucleus charge was about ½ A e , but, from the nature of the experiments, it was difficult to fix the actual value within about 20 per cent. C. G. Darwin worked out completely the deflexion of the α-particle and of the nucleus, taking into account the mass of the latter, and showed that the scattering experiments of Geiger and Marsden could not be reconciled with any law of central force, except the inverse square. The nuclear constitution of the atom was thus very strongly supported by the experiments on scattering of α-rays. Since the atom is electrically neutral, the number of external electrons surrounding the nucleus must be equal to the number of units of resultant charge on the nucleus. It should be noted that, from the consideration of the scattering of X-rays by light elements, Barkla had shown, in 1911, that the number of electrons was equal to about half the atomic weight. This was deduced from the theory of scattering of Sir J. J. Thomson, in which it was assumed that each of the external electrons in an atom acted as an independent scattering unit.

Publisher

The Royal Society

Subject

General Medicine

Cited by 138 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3