The relations connecting the angle-sums and volume of a polytope in space of n dimensions

Author:

Abstract

1.1. In two-dimensional spherical or elliptic geometry we have the familiar relation between the area of a triangle and its angle-sum, ∆ = k 2 (∑ απ ), (1.11) 2 π being the measure of the whole angle at a point, and k the space-constant, or, in spherical geometry, the radius of the sphere. It is well known that in three-dimensional spherical or elliptic geometry there is no corresponding relation involving the volume of a tetrahedron. For elliptic or hyperbolic space of four dimensions it was proved by Dehn that the volume of a simplex can be expressed linearly in terms of the sums of the dihedral angles (angles at a face), angles at an edge, and angles at a vertex, but for space of five dimensions the linear relations do not involve the volume. He indicates also, in a general way, the extensions of these results for spaces of any odd or even dimensions. He shows further that these results are connected with the form of the Euler polyhedral theorem, which is expressed by a linear relation connecting the numbers of boundaries of different dimensions, and which for space of odd dimensions is not homogeneous, e. g ., N 2 — N 1 + N 0 = 2 in three dimen­sions, but for space of even dimensions is homogeneous, e. g ., N 1 — N 0 = 0 in two dimensions, N 3 — N 2 + N 1 — N 0 = 0 in four. The connection, as Dehn points out, was made use of by Legendre in a proof which he gave for the Euler formula in three dimensions. 1.2. Dehn extends this connection in detail for four and five dimensions, and states the following general results in space of dimensions R n for simplexes and for polytopes bounded entirely by simplexes : (1) In R n there are ½ n + 1 or ½( n + 1) relations (according as n is even or odd) between the numbers of boundaries of a polytope bounded by simplexes.

Publisher

The Royal Society

Subject

General Medicine

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neighborly spheres and transversal numbers;Proceedings of Symposia in Pure Mathematics;2024

2. Convex Cones;Lecture Notes in Mathematics;2022

3. Intersection Homology;Handbook of Geometry and Topology of Singularities II;2021

4. Integration bounds for the regular simplex in n-dimensional space;International Journal of Mathematical Education in Science and Technology;2020-10-14

5. Geometric Regular Polytopes;ENCYCLOP MATH APPL;2020-01-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3