Stability of a viscous liquid contained between two rotating cylinders

Author:

Abstract

Part I .—The stability for symmetrical disturbances of a viscous fluid in steady motion between concentric rotating cylinders is investigated mathematically. It is shown that at slow speeds the motion is always stable, but that at high speeds the motion is only stable when the ratio of the speed of the outer cylinder to that of the inner one exceeds a certain value. When the ratio is less than this or when it is negative the motion becomes unstable at high speeds. The “criterion” for stability is found, and in cases suitable for experimental verification an approximate form for the “criterion” is developed which is useful for numerical computation. The type of instability which may be expected to appear when the speed of the cylinders is slowly increased is shown to consist of symmetrical ring-shaped vortices spaced at regular intervals along the length of the cylinders. These vortices rotate alternately in opposite directions. Their dimensions are calculated and it is shown that they are contained in partitions of rectangular cross-section. In the case when the instability arises while both cylinders are rotating in the same direction, these rectangles are squares, so that the vortices are spaced at distances apart equal to the thickness of the annular space between the two cylinders. In the case when the cylinders rotate in opposite directions the spacing, or distance between the centres of neighbouring vortices, is smaller than this; and at the same time two systems of vortices develop—an inner system which is similar to the system which appears when the two cylinders rotate in the same direction, and an outer system, which is much less vigorous and rotates in the opposite direction to the adjacent members of the inner system.

Publisher

The Royal Society

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3