On some direct evidence for downward atmospheric reflection of electric rays

Author:

Abstract

In a recent paper in these Proceedings (Series A, vol. 107, p. 587) Smith-Rose and Barfield have called attention to the two outstanding problems of the propagation of wireless waves over the earth s surface. A complete theory of wireless transmission must explain ( a ), why long-distance communication is possible, and ( b ), why large and rapid variations of signal intensity and apparent direction of propagation of the waves are observed at night, and, to some extent, during daylight, particularly in winter. Smith-Rose and Barfield further point out that both phenomena can be explained to some extent by the well-known Kennelly-Heaviside layer theory, but that it is generally admitted that further evidence of the existence of the layer is needed. They also describe accurate experiments designed to detect the existence of waves arriving at a wireless receiver in a downward direction ( i . e ., inclined to the horizontal), such as must be present if the Heaviside layer theory is correct. In these experiments Smith-Rose and Barfield sought, by directional methods, to detect a departure of the electric field of the waves from the vertical by means of a large Hertzian oscillator, and a departure of the magnetic field from the horizontal by means of a rotating frame aerial. It was, however, found that the conductivity of the ground was sufficiently high to make it act very nearly as a perfect reflector, and, because of the presence of the reflected wave from the ground, none of the effects sought for could be detected even in conditions such as are normally associated with signal strength and directional variations. These authors therefore concluded that the results of their experiments could not be considered as evidence for or against the Heaviside layer theory. In a later paper, Smith-Rose and Barfield describe further experiments of this type, again with negative results, and state that “ adequate experimental evidence on the existence of the Heaviside layer is still lacking.”

Publisher

The Royal Society

Subject

General Medicine

Cited by 125 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3