A methodology for carbamate post-translational modification discovery and its application in Escherichia coli

Author:

Linthwaite Victoria L.1ORCID,Cann Martin J.1

Affiliation:

1. Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK

Abstract

Carbon dioxide can influence cell phenotypes through the modulation of signalling pathways. CO 2 regulates cellular processes as diverse as metabolism, cellular homeostasis, chemosensing and pathogenesis. This diversity of regulated processes suggests a broadly conserved mechanism for CO 2 interactions with diverse cellular targets. CO 2 is generally unreactive but can interact with neutral amines on protein under normal intracellular conditions to form a carbamate post-translational modification (PTM). We have previously demonstrated the presence of this PTM in a subset of protein produced by the model plant species Arabidopsis thaliana . Here, we describe a detailed methodology for identifying new carbamate PTMs in an extracted soluble proteome under biologically relevant conditions. We apply this methodology to the soluble proteome of the model prokaryote Escherichia coli and identify new carbamate PTMs . The application of this methodology, therefore, supports the hypothesis that the carbamate PTM is both more widespread in biology than previously suspected and may represent a broadly relevant mechanism for CO 2 –protein interactions.

Funder

Biotechnology and Biological Sciences Research Council

Leverhulme Centre for Integrative Research on Agriculture and Health

Publisher

The Royal Society

Subject

Biomedical Engineering,Biomaterials,Biochemistry,Bioengineering,Biophysics,Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3