Affiliation:
1. Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
2. Department of Civil Engineering, National Taiwan University, Taipei 106216, Taiwan
Abstract
This study presents a novel hierarchical nested honeycomb drawing inspiration from the hierarchical structures found in energy-absorbing citrus peels. Our investigation reveals that integrating secondary hierarchical units into primary honeycomb cells results in energy absorption profiles featuring two distinct plateaus. Notably, we found that these profiles can be finely tuned by adjusting the thickness of primary and secondary cell walls. Additionally, our study demonstrates a strategic removal of cell walls at key positions, reducing material consumption without compromising specific energy absorption. By establishing comprehensive structure–property relationships, we offer valuable insights into the design and optimization of hierarchical cellular materials. Compared with traditional honeycomb structures, the nested honeycomb structure shows a twofold increase in compressive strength and a fivefold increase in specific energy absorption, positioning them as promising candidates for applications requiring two-step impact protection and tunable performance, ranging from packaging to high-speed automobiles.
Funder
National Science and Technology Council
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献