What it means to be alive: a synthetic cell perspective

Author:

Elani Yuval12,Seddon John M.3

Affiliation:

1. Department of Chemical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK

2. fabriCELL, Imperial College London, Exhibition Road, London SW7 2AZ, UK

3. Department of Chemistry, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK

Abstract

Advances in bottom-up synthetic biology offer the exciting—albeit contentious—prospect of transitioning bio-science researchers from passive observers of life to potential creators of it. Synthetic cells closely emulate the attributes of their biological counterparts. These rationally designed microsystems exhibit emergent properties and life-like functionalities. They can therefore be used as simplified cell models to decipher the rules of life, and as programmable biologically powered micromachines for application in healthcare and biotechnology more broadly. While there is a consensus that current synthetic cells are not yet ‘living’, the question of what defines ‘aliveness’ is gaining increasing relevance. Exploring this concept necessitates a multidisciplinary approach, where scientists from across domains in the physical, life, engineering and social sciences participate in community-level discussions, together with the acceptance of a set of criteria which defines a living system. Achieving a widely accepted definition of ‘living’ represents a possible mission-oriented endpoint to the synthetic cell endeavour, uniting the community towards a common goal. As the field evolves, researchers must address regulatory, ethical, societal and public perception implications, while fostering collaborative efforts to harness the transformative potential of synthetic cells.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biomaterials,Biochemistry,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3