Pirfenidone increases transverse tubule length in the infarcted rat myocardium

Author:

Moammer Hussam12,Bai Jizhong1,Jones Timothy L. M.13,Ward Marie1,Barrett Caroyln1,Crossman David J.1ORCID

Affiliation:

1. Manaaki Manawa—The Centre for Heart Research, Department of Physiology, School of Medical and Health Sciences, Faculty of Medical and Health Sciences, Waipapa Taumata Rau / The University of Auckland, Park Road, Grafton, Auckland, New Zealand

2. Department of Clinical Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia

3. Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA

Abstract

Transverse (t)-tubule remodelling is a prominent feature of heart failure with reduced ejection fraction (HFrEF). In our previous research, we identified an increased amount of collagen within the t-tubules of HFrEF patients, suggesting fibrosis could contribute to the remodelling of t-tubules. In this research, we tested this hypothesis in a rodent model of myocardial infarction induced heart failure that was treated with the anti-fibrotic pirfenidone. Confocal microscopy demonstrated loss of t-tubules within the border zone region of the infarct. This was documented as a reduction in t-tubule frequency, area, length, and transverse elements. Eight weeks of pirfenidone treatment was able to significantly increase the area and length of the t-tubules within the border zone. Echocardiography showed no improvement with pirfenidone treatment. Surprisingly, pirfenidone significantly increased the thickness of the t-tubules in the remote left ventricle of heart failure animals. Dilation of t-tubules is a common feature in heart failure suggesting this may negatively impact function but there was no functional loss associated with pirfenidone treatment. However, due to the relatively short duration of treatment compared to that used clinically, the impact of long-term treatment on t-tubule structure should be investigated in future studies.

Funder

Auckland Medical Research Foundation

Health Research Council of New Zealand

Publisher

The Royal Society

Subject

Biomedical Engineering,Biomaterials,Biochemistry,Bioengineering,Biophysics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3