Perception-driven dynamics of mimicry based on attractor field model

Author:

Brejcha Jindřich1ORCID,Tureček Petr12ORCID,Kleisner Karel1ORCID

Affiliation:

1. Department of Philosophy and History of Science, Faculty of Science, Charles University, Viničná 7, Praha 2 128 00, Czech Republic

2. Center for Theoretical Study, Charles University and Czech Academy of Sciences, Jilská 1, Prague 1 110 00, Czech Republic

Abstract

We provide a formal account of an interface that bridges two different levels of dynamic processes manifested by mimicry: prey–prey interactions and predators' perception. Mimicry is a coevolutionary process between an animate selective agent and at least two similar organisms selected by agent's perception-driven actions. Attractor field model explains perceived similarity of forms by noting that in both human and animal cognition, morphologically intermediate forms are more likely to be perceived as belonging to rare rather than abundant forms. We formalize this model in terms of predators' perception space deformation using numerical simulations and argue that the probability of confusion between similar species creates pressure on the perception space, which in turn leads to inflation of regions of perception space with high density of species representations. Such inflation causes increased discrimination between species by a predator, which implies that adaptive mimicry could initially emerge more easily among atypical species because they do not need the same level of similarity to the model. We provide a theoretical instrument to conceptualize interdependence between objective measurable matrices and perceived matrices of the same external reality. We believe that our framework leads to a more precise understanding of the evolution of mimicry.

Funder

Grantová Agentura České Republiky

Univerzita Karlova v Praze

Publisher

The Royal Society

Subject

Biomedical Engineering,Biomaterials,Biochemistry,Bioengineering,Biophysics,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3