Exploring the West African forest island phenomenon: scientific insights gained, successes achieved and capacities strengthened

Author:

Logah Vincent1ORCID,Azeez Jamiu O.2ORCID,Compaore Halidou3,Mesele Samuel Ayodele4ORCID,Ocansey Caleb Melenya56,Bougma Amelie B.3,Tetteh Erasmus Narteh6,Veenendaal Elmar7,Lloyd Jon8

Affiliation:

1. Department of Crop and Soil Sciences, Kwame Nkrumah University of Science and Technology , Kumasi, Ghana

2. Federal University of Agriculture Abeokuta , Abeokuta, Nigeria

3. Institut de l’Environnement et de Recherches Agricoles , Tougan, Burkina Faso

4. International Institute of Tropical Agriculture (IITA), Headquarters Ibadan , Ibadan, Nigeria

5. Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences , Gödöllő, Hungary

6. CSIR-Crops Research Institute , Fumesua, Ghana

7. Plant Ecology and Nature Conservation Group, Wageningen University , 6700 AA Wageningen, The Netherlands

8. Department of Life Sciences, Imperial College of Science and Technology , London, UK

Abstract

Anthropogenic activities around local villages in mesic savanna landscapes of West Africa have resulted in soil improvement and forest establishment outside their climatic zones. Such unique ‘forest islands’ have been reported to provide ecosystem services including biodiversity conservation. However, the science underpinning their formations is limitedly studied. In 2015 and with funding support from the Royal Society-DFID (now FCDO), we set out to investigate the biogeochemistry of the forest islands in comparison with adjacent natural savanna and farmlands across 11 locations in Burkina Faso, Ghana and Nigeria. Our results showed that the forest islands do not differ significantly from the adjoining ecosystems in soil mineralogy implying that their formation was anthropogenically driven. We observed greater soil organic carbon and nutrient distributions in the forest islands, which also had more stable macro (>500 μm) and meso-aggregates (500–250 μm) than the adjoining agricultural lands. We found that soil micro-aggregate (250–53 μm) stability was climate (precipitation) driven in the West African ecosystems while meso- and macro-aggregate stability was land-use driven. In one of the unique forest islands we studied in the Mole National Park of Ghana, we found its mineral-associated organic carbon over 40% greater than the adjoining natural savanna with potential implications for the achievement of the global initiative of the ‘4p1000’ in West Africa. We conclude that the North–South–South research collaboration has established clearly, the science underlying the age-long West African forest island phenomenon and has, among many successes, led to capacity building of young scientists driving cutting-edge research in climate change adaptation and food systems transformation in the sub-region.

Funder

Royal Society-FCDO

Publisher

The Royal Society

Reference39 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3