Data-driven prediction and origin identification of epidemics in population networks

Author:

Larson Karen1,Arampatzis Georgios23,Bowman Clark4,Chen Zhizhong5,Hadjidoukas Panagiotis2,Papadimitriou Costas6ORCID,Koumoutsakos Petros2ORCID,Matzavinos Anastasios1ORCID

Affiliation:

1. Division of Applied Mathematics, Brown University, Providence, RI 02912, USA

2. Computational Science and Engineering Laboratory, ETH Zürich, CH-8092, Switzerland

3. Collegium Helveticum, CH-8092 Zürich, Switzerland

4. Department of Mathematics and Statistics, Hamilton College, Clinton, NY 13323, USA

5. Department of Physics, Brown University, Providence, RI 02912, USA

6. Department of Mechanical Engineering, University of Thessaly, GR-38334 Volos, Greece

Abstract

Effective intervention strategies for epidemics rely on the identification of their origin and on the robustness of the predictions made by network disease models. We introduce a Bayesian uncertainty quantification framework to infer model parameters for a disease spreading on a network of communities from limited, noisy observations; the state-of-the-art computational framework compensates for the model complexity by exploiting massively parallel computing architectures. Using noisy, synthetic data, we show the potential of the approach to perform robust model fitting and additionally demonstrate that we can effectively identify the disease origin via Bayesian model selection. As disease-related data are increasingly available, the proposed framework has broad practical relevance for the prediction and management of epidemics.

Funder

Directorate for Mathematical and Physical Sciences

European Research Council Advanced Investigator Award

H2020 Marie Skłodowska-Curie Actions

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3