Moisture alone is sufficient to impart strength but not weathering resistance to termite mound soil

Author:

Zachariah Nikita1ORCID,Murthy Tejas G.2,Borges Renee M.1ORCID

Affiliation:

1. Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India

2. Department of Civil Engineering, Indian Institute of Science, Bangalore 560012, India

Abstract

Soil is used for the construction of structures by many animals, at times admixed with endogenous secretions. These additives, along with soil components, are suggested to have a role in biocementation. However, the relative contribution of endogenous and exogenous materials to soil strength has not been adequately established. Termite mounds are earthen structures with exceptional strength and durability including weathering resistance to wind and rain. With in situ and laboratory-based experiments, we demonstrate that the fungus-farming termite Odontotermes obesus which builds soil nest mounds, when given a choice, prefers soil close to its liquid limit for construction. At this moisture content, the soil–water mixture alone even in the absence of termite handling undergoes self-weight consolidation and upon drying attains a monolithic, densely packed structure with compressive strength comparable to the in situ strength of the mound soil; however, the soil–water mixture alone has lower resistance to water erosion than the in situ mound samples, suggesting that termite secretions impart weathering resistance and thereby long-term stability to the mound. Therefore, weathering resistance and compressive strength are conferred by different aspects of termite soil manipulation. Our work provides novel insights into termite mound construction and strength correlates for earthen structures built by animals.

Funder

Ministry of Environment and Forests

Department of Biotechnology , Ministry of Science and Technology

Council of Scientific and Industrial Research

Department of Science and Technology, India

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3