Ethylene glycol assisted three-dimensional floral evolution of BiFeO 3 -based nanostructures with effective magneto-electric response

Author:

Abbas Syed Kumail1,Mustafa Ghulam M.1,Saleem Murtaza2,Sufyan Muhammad3,Riaz Saira1,Naseem Shahzad1,Atiq Shahid1ORCID

Affiliation:

1. Centre of Excellence in Solid State Physics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan

2. Department of Physics, School of Science and Engineering (SSE), Lahore University of Management Sciences (LUMS), Lahore, Pakistan

3. School of Materials Science and Engineering, South China University of Technology, Guangzhou, China 510640

Abstract

Controlled growth of nanostructures plays a vital role in tuning the physical and chemical properties of functional materials for advanced energy and memory storage devices. Herein, we synthesized hierarchical micro-sized flowers, built by the self-assembly of highly crystalline, two-dimensional nanoplates of Co- and Ni-doped BiFeO 3 , using a simple ethylene glycol-mediated solvothermal method. Pure BiFeO 3 attained scattered one-dimensional nanorods-type morphology having diameter nearly 60 nm. Co-doping of Co and Ni at Fe-site in BiFeO 3 does not destabilize the morphology; rather it generates three-dimensional floral patterns of self-assembled nanoplates. Unsaturated polarization loops obtained for BiFeO 3 confirmed the leakage behaviour of these rhombohedrally distorted cubic perovskites. These loops were then used to determine the energy density of the BiFeO 3 perovskites. Enhanced ferromagnetic behaviour with high coercivity and remanence was observed for these nanoplates. A detailed discussion about the origin of ferromagnetic behaviour based on Goodenough–Kanamori's rule is also a part of this paper. Impedance spectroscopy revealed a true Warburg capacitive behaviour of the synthesized nanoplates. High magneto-electric (ME) coefficient of 27 mV cm −1 Oe −1 at a bias field of −0.2 Oe was observed which confirmed the existence of ME coupling in these nanoplates.

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3