The adsorption and mechanism of the nitrification inhibitor nitrapyrin in different types of soils

Author:

Zhang Zhongqing1ORCID,Gao Qiang1ORCID,Yang Jingmin1,Li Yue2,Liu Jinhua1,Wang Yujun1,Su Hongge1,Wang Yin1,Wang Shaojie1,Feng Guozhong1

Affiliation:

1. Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, College of Resources and Environmental Science, Jilin Agricultural University, Changchun 130118, People's Republic of China

2. Ecological Environment Bureau of the Changchun Jingyue Economic Development Zone, Changchun 130118, People's Republic of China

Abstract

The nitrapyrin was easily adsorbed by soil, but most current studies have focused on comparing the effects of nitrapyrin application at different soil organic matter levels and in different soil types. The adsorption kinetics and isotherm adsorption of the nitrification inhibitor nitrapyrin in black soil, chernozem and planosol were studied in this paper. The adsorption kinetics were fitted by quasi-second-order kinetic equation ( R 2 0.8907, p < 0.05) with a lower acting energy of adsorption ( E a < 8.0 kJ mol −1 ). The isotherm was fitted by the Langmuir equation ( R 2 0.9400 * , p < 0.05). The adsorption mechanism was determined to involve a spontaneous endothermic reaction accompanied mainly by physical adsorption to the surface that belonged to the ‘ L ’ isotherm curve ( n > 1). Temperature promoted the adsorption of nitrapyrin in these three soils, and the maximum adsorption occurring at different temperatures following the order of black soil > planosol > chernozem. The adsorption capacity and rate decreased with decreasing soil organic matter. For the black soil, the nitrapyrin EC adsorption rate was more than seven times higher than that of nitrapyrin CS. The result would determine the dose of nitrapyrin required for availability in different types of soils and to provide a theoretical basis for elucidating the adsorption of nitrapyrin in the soil environment.

Funder

Scientific Technology Development Research Plan Project of Jilin Province in China

National Key Research and Development Program of China

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3