Affiliation:
1. Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, People's Republic of China
2. Department of Materials Science and Engineering, KTH-Royal Institute of Technology, Stockholm SE10044, Sweden
Abstract
Inkjet printing has become a promising, efficient, inexpensive, scalable technique for materials deposition, mask-less and digital patterning in many device applications. Meanwhile, the ink preparation remains a challenge especially for printing functional oxide materials. Based on the principles of inkjet printing (especially relevant for piezoelectric drop-on-demand inkjet printer) and the process of the conversion of liquid ink into solid thin films of oxide materials, we present two approaches to the design and tailoring of inks: (i) oxide particle suspensions (e.g. SiO
2
, TiO
2
, Fe
3
O
4
) and (ii) metal-acetates precursor solutions for directly printing oxide thin films (e.g. ZnO, MgO, ITO and so forth). The solution inks are stable and produce tunable oxide films with high density and smooth surface. For some of the inks containing multi-type acetates with possible phase separation even before calcinations, we have developed a chelating procedure in order to tailor the films into single-phase homogeneity. The work lays a foundation for inkjet printing of oxides films for functional applications in electronic, photonic and energy devices.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献