Affiliation:
1. Faculty of Aerospace Engineering, Technion, Haifa 32000, Israel
Abstract
Sea snakes propel themselves by lateral deformation waves moving backwards along their bodies faster than they swim. In contrast to typical anguilliform swimmers, however, their swimming is characterized by exaggerated torsional waves that lead the lateral ones. The effect of torsional waves on hydrodynamic forces generated by an anguilliform swimmer is the subject matter of this study. The forces, and the power needed to sustain them, are found analytically using the framework of the slender (elongated) body theory. It is shown that combinations of torsional waves and angle of attack can generate both thrust and lift, whereas combinations of torsional and lateral waves can generate lift of the same magnitude as thrust. Generation of lift comes at a price of increasing tail amplitude, but otherwise carries practically no energetic penalty.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献