The interplay of blood flow and temperature in regional hyperthermia: a mathematical approach

Author:

Bosque Jesús J.1ORCID,Calvo Gabriel F.1,Pérez-García Víctor M.1,Navarro María Cruz2

Affiliation:

1. Department of Mathematics, Mathematical Oncology Laboratory (MOLAB), University of Castilla-La Mancha, Ciudad Real, Spain

2. Department of Mathematics-IMACI, Facultad de Ciencias y Tecnologías Químicas, University of Castilla-La Mancha, Ciudad Real, Spain

Abstract

In recent decades, hyperthermia has been used to raise oxygenation levels in tumours undergoing other therapeutic modalities, of which radiotherapy is the most prominent one. It has been hypothesized that oxygenation increases would come from improved blood flow associated with vasodilation. However, no test has determined whether this is a relevant assumption or other mechanisms might be acting. Additionally, since hyperthermia and radiotherapy are not usually co-administered, the crucial question arises as to how temperature and perfusion in tumours will change during and after hyperthermia. Overall, it would seem necessary to find a research framework that clarifies the current knowledge, delimits the scope of the different effects and guides future research. Here, we propose a simple mathematical model to account for temperature and perfusion dynamics in brain tumours subjected to regional hyperthermia. Our results indicate that tumours in well-perfused organs like the brain might only reach therapeutic temperatures if their vasculature is highly disrupted. Furthermore, the characteristic times of return to normal temperature levels are markedly shorter than those required to deliver adjuvant radiotherapy. According to this, a mechanistic coupling of perfusion and temperature would not explain any major oxygenation boost in brain tumours immediately after hyperthermia.

Funder

Ministerio de Economía y Competitividad

Ministerio de Ciencia e Innovación

Universidad de Castilla-La Mancha

James S. McDonnell Foundation

Junta de Comunidades de Castilla-La Mancha

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3