Synchronization-based control for a collaborative robot

Author:

Eberle Henry1ORCID,Nasuto Slawomir J.2,Hayashi Yoshikatsu2

Affiliation:

1. Department of Orthopaedics and Musculoskeletal Science, Division of Surgery, University College London, London WC1E 6BT, UK

2. Brain Embodiment Lab, Biomedical Engineering, School of Biological Sciences, University of Reading, Reading RG6 6AH, UK

Abstract

This article introduces a new control scheme for controlling a robotic manipulator in a collaborative task, allowing it to respond proactively to its partner’s movements. Unlike conventional robotic systems, humans can operate in an unstructured, dynamic environment due to their ability to anticipate changes before they occur and react accordingly. Recreating this artificially by using a forward model would lead to the huge computational task of simulating a world full of complex nonlinear dynamics and autonomous human agents. In this study, a controller based on anticipating synchronization, where a ‘leader’ dynamical system is predicted by a coupled ‘follower’ with delayed self-feedback, is used to modify a robot’s dynamical behaviour to follow that of a series of leaky integrators and harmonic oscillators. This allows the robot (follower) to be coupled with a collaborative partner (leader) to anticipate its movements, without a complete model of its behaviour. This is tested by tasking a simulated Baxter robot with performing a collaborative manual coordination task with an autonomous partner under a range of feedback delay conditions, confirming its ability to anticipate using oscillators instead of a detailed forward model.

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3