Statistical wall shear stress maps of ruptured and unruptured middle cerebral artery aneurysms

Author:

Goubergrits L.1,Schaller J.1,Kertzscher U.1,van den Bruck N.2,Poethkow K.2,Petz Ch.2,Hege H.-Ch.2,Spuler A.3

Affiliation:

1. Biofluid Mechanics Laboratory, Charité–Universitätsmedizin Berlin, Berlin, Germany

2. Visualization and Data Analysis, Zuse Institute Berlin, Berlin, Germany

3. Department of Neurosurgery, Helios Hospital Berlin-Buch, Berlin, Germany

Abstract

Haemodynamics and morphology play an important role in the genesis, growth and rupture of cerebral aneurysms. The goal of this study was to generate and analyse statistical wall shear stress (WSS) distributions and shapes in middle cerebral artery (MCA) saccular aneurysms. Unsteady flow was simulated in seven ruptured and 15 unruptured MCA aneurysms. In order to compare these results, all geometries must be brought in a uniform coordinate system. For this, aneurysms with corresponding WSS data were transformed into a uniform spherical shape; then, all geometries were uniformly aligned in three-dimensional space. Subsequently, we compared statistical WSS maps and surfaces of ruptured and unruptured aneurysms. No significant ( p > 0.05) differences exist between ruptured and unruptured aneurysms regarding radius and mean WSS. In unruptured aneurysms, statistical WSS map relates regions with high (greater than 3 Pa) WSS to the neck region. In ruptured aneurysms, additional areas with high WSS contiguous to regions of low (less than 1 Pa) WSS are found in the dome region. In ruptured aneurysms, we found significantly lower WSS. The averaged aneurysm surface of unruptured aneurysms is round shaped, whereas the averaged surface of ruptured cases is multi-lobular. Our results confirm the hypothesis of low WSS and irregular shape as the essential rupture risk parameters.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3