Spectroscopic analysis of myoglobin and cytochrome c dynamics in isolated cardiomyocytes during hypoxia and reoxygenation

Author:

Almohammedi A.1,Kapetanaki S. M.2,Wood B. R.3,Raven E. L.2,Storey N. M.4,Hudson A. J.2

Affiliation:

1. Department of Physics, University of Leicester, Leicester LE1 7RH, UK

2. Department of Chemistry, University of Leicester, Leicester LE1 7RH, UK

3. Centre for Biospectroscopy and School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia

4. Department of Cell Physiology and Pharmacology, University of Leicester, Leicester LE1 9HN, UK

Abstract

Raman microspectroscopy was applied to monitor the intracellular redox state of myoglobin and cytochrome c from isolated adult rat cardiomyocytes during hypoxia and reoxygenation. The nitrite reductase activity of myoglobin leads to the production of nitric oxide in cells under hypoxic conditions, which is linked to the inhibition of mitochondrial respiration. In this work, the subsequent reoxygenation of cells after hypoxia is shown to lead to increased levels of oxygen-bound myoglobin relative to the initial levels observed under normoxic conditions. Increased levels of reduced cytochrome c in ex vivo cells are also observed during hypoxia and reoxygenation by Raman microspectroscopy. The cellular response to reoxygenation differed dramatically depending on the method used in the preceding step to create hypoxic conditions in the cell suspension, where a chemical agent, sodium dithionite, leads to reduction of cytochromes in addition to removal of dissolved oxygen, and bubbling-N 2 gas leads to displacement of dissolved oxygen only. These results have an impact on the assessment of experimental simulations of hypoxia in cells. The spectroscopic technique employed in this work will be used in the future as an analytical method to monitor the effects of varying levels of oxygen and nutrients supplied to cardiomyocytes during either the preconditioning of cells or the reperfusion of ischaemic tissue.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3