Hepatitis C virus modelled as an indirectly transmitted infection highlights the centrality of injection drug equipment in disease dynamics

Author:

Miller-Dickson Miles D.1,Meszaros Victor A.1,Almagro-Moreno Salvador23ORCID,Brandon Ogbunugafor C.1ORCID

Affiliation:

1. Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02906, USA

2. Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32827, USA

3. National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL 32816, USA

Abstract

The hepatitis C virus (HCV) epidemic often occurs through the persistence of injection drug use. Mathematical models have been useful in understanding various aspects of the HCV epidemic, and especially, the importance of new treatment measures. Until now, however, few models have attempted to understand HCV in terms of an interaction between the various actors in an HCV outbreak—hosts, viruses and the needle injection equipment. In this study, we apply perspectives from the ecology of infectious diseases to model the transmission of HCV among a population of injection drug users. The products of our model suggest that modelling HCV as an indirectly transmitted infection—where the injection equipment serves as an environmental reservoir for infection—facilitates a more nuanced understanding of disease dynamics, by animating the underappreciated actors and interactions that frame disease. This lens may allow us to understand how certain public health interventions (e.g. needle exchange programmes) influence HCV epidemics. Lastly, we argue that this model is of particular importance in the light of the modern opioid epidemic, which has already been associated with outbreaks of viral diseases.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3