Affiliation:
1. Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
2. Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, New South Wales 2234, Australia
Abstract
The fibronectin fragment, 9th–10th-type III domains (FIII9–10), mediates cell attachment and spreading and is commonly investigated as a bioadhesive interface for implant materials such as titania (TiO
2
). How the extent of the cell attachment–spreading response is related to the nature of the adsorbed protein layer is largely unknown. Here, the layer thickness and surface fraction of two FIII9–10 mutants (both protonated and deuterated) adsorbed to TiO
2
were determined over concentrations used in cell adhesion assays. Unexpectedly, the isotopic forms had different adsorption behaviours. At solution concentrations of 10 mg l
−1
, the surface fraction of the less conformationally stable mutant (FIII9′10) was 42% for the deuterated form and 19% for the protonated form (fitted to the same monolayer thickness). Similarly, the surface fraction of the more stable mutant (FIII9′10–H2P) was 34% and 18% for the deuterated and protonated forms, respectively. All proteins showed a transition from monolayer to bilayer between 30 and 100 mg l
−1
, with the protein longitudinal orientation moving away from the plane of the TiO
2
surface at high concentrations. Baby hamster kidney cells adherent to TiO
2
surfaces coated with the proteins (100 mg l
−1
) showed a strong spreading response, irrespective of protein conformational stability. After surface washing, FIII9′10 and FIII9′10–H2P bilayer surface fractions were 30/25% and 42/39% for the lower/upper layers, respectively, implying that the cell spreading response requires only a partial protein surface fraction. Thus, we can use neutron reflectivity to inform the coating process for generating bioadhesive TiO
2
surfaces.
Subject
Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献