The evolutionary dynamics of within-generation immune priming in invertebrate hosts

Author:

Best Alex12,Tidbury Hannah3,White Andy4,Boots Mike2

Affiliation:

1. School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK

2. Biosciences, University of Exeter Cornwall Campus, Penryn, Cornwall TR10 9EZ, UK

3. Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK

4. Department of Mathematical Sciences, Heriot-Watt University, Edinburgh, UK

Abstract

While invertebrates lack the machinery necessary for ‘acquired immunity’, there is increasing empirical evidence that exposure to low levels of disease may ‘prime’ an invertebrate's immune response, increasing its defence to subsequent exposure. Despite this increasing empirical data, there has been little theoretical attention paid to immune priming. Here, we investigate the evolution of immune priming, focusing on the role of the unique feedbacks generated by a newly developed susceptible–primed–infected epidemiological model. Contrasting our results with previous models on the evolution of acquired immunity, we highlight that there are important implications to the evolution of immunity through priming owing to these different epidemiological feedbacks. In particular, we find that in contrast to acquired immunity, priming is strongly selected for at high as well as intermediate pathogen virulence. We also find that priming may be greatest at either intermediate or high host lifespans depending on the severity of disease. Furthermore, hosts faced with more severe pathogens are more likely to evolve diversity in priming. Finally, we show when the evolution of priming leads to the exclusion of the pathogens or hosts experiencing population cycles. Overall the model acts as a baseline for understanding the evolution of priming in host–pathogen systems.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3