The role of familiarity in signaller–receiver interactions

Author:

Ma Wei Ji12ORCID,Higham James P.3ORCID

Affiliation:

1. Center for Neural Science, New York University, 4 Washington Place, New York, NY, USA

2. Department of Psychology, New York University, 6 Washington Place, New York, NY, USA

3. Department of Anthropology, New York University, 25 Waverly Place, New York, NY, USA

Abstract

In animal communication, individuals of species exhibiting individual recognition of conspecifics with whom they have repeated interactions, receive signals not only from unfamiliar conspecifics, but also from individuals with whom they have prior experience. Empirical evidence suggests that familiarity with a specific signaller aids receivers in interpreting that signaller's signals, but there has been little theoretical work on this effect. Here, we develop a Bayesian decision-making model and apply it to the well-studied systems of primate ovulation signals. We compare the siring probability of learner males versus non-learner males, based on variation in their assessment of the best time to mate and mate-guard females. We compare males of different dominance ranks, and vary the number of females, and their cycle synchrony. We find strong fitness advantages for learners, which manifest very quickly. Receivers do not have to see the full range of a signaller's signals in order to start gaining familiarity benefits. Reproductive asynchrony and increasing the number of females both enhance learning advantages. We provide theoretical evidence for a strong advantage to specific learning of a signaller's range of signals in signalling systems. Our results have broad implications, not only for understanding communication, but in elucidating additional fitness benefits to group-living, the evolution of individual recognition, and other characteristics of animal behavioural biology.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3